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in this case, an optimum value of the parameter a can be

determined self-consistently tia the following iterative scheme:

(i) Assign an initiaf value to a in an arbitrary way.

(ii) Solve the matrix equation to obtain k~ as an eigenvalue

(note that ~ is given as an input datum).

(iii) Calculate a according to (6).

(iv) Iterate the above procedures (ii) and (iii) until the solu-

tion converges within required accuracy.

Although this method includes only one decay parameter, it

does not require the calculation of the eigenvector.

III. NUMERICAL EXAMPLE

To demonstrate the power of the present algorithms, we con-

sider a round optical fiber since its exact solution is readily

available. Making use of symmetry nature, we divide only one

quarter of the cross section into quadratic finite and infinite

elements, as illustrated in Fig. 3. As a finite element scheme, we

use the scalar formulation [2], [3].

Table I exhibits an example of the analyzed results, where the

index difference A = 1 percent, nC1=1.46, and /3a = 6 (a: core

radius), and the initial set of the parameters is a, /~ = a, /~ = 0.1.

Note that ~a = 6 corresponds to a case very near cutoff. It is

readily found from the table that sufficiently accurate solutions

are obtainable only with one time of iteration. On the other hand,

the solution for the simple truncation, in which the boundaries

x = XO, y = YO are assumed to be perfect conducting walls and

no infinite elements are added to them, is far less accurate than

that for the present algorithms.

Fig. 4 displays an example of the field distributions in the cross

section. In this figure the region IXl >7, IYI >7 corresponds to

that divided into infinite elements. It is seen from the figure that

the interface between finite-element and infinite-element regions

is smooth in spite of only one time of iteration.

IV. CONCLUSIONS

A self-consistent finite-element approach for the eigenmode

analysis of unbounded waveguides has been proposed using

decay-type infinite elements. Two algorithms have been described

for the determination of the unknown decay parameters. Through

the application to the eigenmode anrdysis of an opticaf fiber, the

power of this approach has been successfully demonstrated.
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Analysis of Coupled Microslabm Lines

BRIAN YOUNG AND TATSUO ITOH, FELLOW, IEEE

Ab.@act — Symmetrically coupled Microslab lines are analyzed with a

mode-matching method to build design charts for the propagation constant

and characteristic impedance. Results are provided for GaAs/afrrmina

Microslab implementations.

I. INTRODUCTION

Microslab is a novel low-loss quasi-planar waveguide intended

for use at millimeter-wave frequencies [1]. The single-line imple-

mentation has been studied and the results appear in [2], where a

design procedure is presented which minimizes conductor loss,

and design charts are given for implementation on GaAs sub-

strates. This paper extends that work by analyzing the symmetri-

cal coupled-line Microslab configuration. Design charts are pro-

vided for GaAs/alumina implementations to complement the

results in [2], The design charts to complete the GaAs implemen-

tation for insulating layer dielectric constants of 8.2 and 11.5 are

not included due to the lack of space.

II. ANALYSIS

The ana3ysis method used to build the design charts is the

mode-matching method. The particular procedure is based on the

one used in [2]. The method is outlined below to provide the

additional details necessay for the coupled-line implementation.

The symmetrically coupled Microslab is shown in Fig. 1. The

metallizations are perfectly conducting with zero thickness, and

the dielectrics are lossless. A cover plate is added to the structure

to discretize the eigenvalue spectrum [3]. Since the strips have

equaf widths, the structure can be divided rdong the plane of

symmetry with a magnetic (electric) wall to eliminate the odd

(even) modes. The divided structure is further subdivided into

four regions as shown in Fig. 2 for modal expansion. Extra

dielectrics are added to the left and right of the strip in regions 1

and 4 to facilitate checking the program.
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Fig. 1. Symmetric coupled-line Microslab.
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Fig. 2. Subdivision of Mlcroslab into four regions for mode-matching

analysis.

Each region is a section of layered parallel-plate waveguide.

The fields in each are expanded in the parallel-plate waveguide

modes, as discussed in [2]. For computer implementation, the

modal expansions are truncated at M, terms in the i th region,

Equal numbers of TM’ and TE’ modes are retained so that the

total number of modes in the i th region is 2 M,. The field

expansions are then matched at the x = S/2 and x = W+ S/2

interfaces. The resulting homogeneous matrix equation yields the

propagation constants when the determinant vanishes.

The number of modes retained in the expansions is constrained

by the matrix equation and the edge condition. A square matrix

requires that 2 M2 + 2 M3 = Ml + Md. The edge condition re-

quires that Mz /M1 = Mz /M4 = c/d [4], which matches the

spectral components along the interfaces. The accuracy of the

solution is set by choosing the number of modes in one region.

After the homogeneous matrix equation is solved, the expan-

sion coefficients in regions 1 and 4 are found by choosing one

coefficient arbitrarily and then solving the resulting least squares

problem using the QR factorization. The coefficients in regions 2

and 3 can then be easily computed.

As in [2], the problem is formulated entirely in real functions

and only real solutions are searched for and computed. This

limits the search to nonleaky solutions (of primary interest), but

it greatly reduces the computation time.

The program was verified by computing the dispersion curve

for a layered coupled-line microstnp. The results are shown in

Fig. 3. The mode-matching results are compared with the results

from a spectral-domain program. The spectral-domain results are

for an open structure, while the mode-matching analysis includes

the cover plate. The cover plate pushes /3/& higher by increasing

the ratio of dielectric to air, with greater effect at lower frequen-
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Fig. 3. Dispersion comparison for a layered microstrip. The spectral-domain
results are for an open structure.
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Fig. 4. Design charts for c1 = c, -9.7, <2 = 12.9, W= 0.4 mm. (a) Disper-

sion. (b) Characteristic impedance.
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Fig 5. Design charts for c1 = es = 9.7, Cz =12 9, w = 1 mm. (a) Disperslorr

(b) Characteristic impedance.

ties, where the plate is electrically closer to the strips. Despite

this, the agreement between the two results is excellent.

The power–voltage definition is used for the characteristic

impedrmce for the reason given in [2]: poor behavior of the strip

currents at high frequencies. Since a leaky mode has infinite

power content, the characteristic impedance of a leaky mode is

zero. This fact manifests itself as dips in the characteristic imped-

ance design charts as modes become weakly bound.

III. DESIGN CHARTS

The structure for which design charts are provided is the

coupled-line version of the c1 = <q = 9.7, C2 =12.9 single-line case

from Fig. 11 in [2]. The coupled-line design charts corresponding

to the c1 = C3= 8.2, 11.5 single-line cases from Figs. 10 and 12 in

[2] are not included due to the lack of space.

The coupled-line design charts with c1 = C3= 9.7, (2 = 12.9 for

three different strip widths are given in Figs. 4–6. The dimen-

sions are shown in the inset of the dispersion curves. The cover

plate was set at the same height for which the single-line design

chart in [2] was constructed to maintain consistency in the

results. The coupled-line charts plot only the lowest order even
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Fig. 6. Design charts for c1 = c, = 9,7, <z = 12,9, 1+’= 1,8 mm, (a) Disper-

sion. (b) Characteristic impedance,

and odd modes in their nonleaky regions. Modes below the

dashed curves in the propagation constant charts are leaky and

hence unsolvable by the techniques used here. Each design chart

data point calculation for both the propagation constant and the

characteristic impedance required on the order of 20– 30 seconds

on a Cray X-MP computer. Experimental verification of the

charts is still required.

The convergence of the design chart pair (dispersion and

impedance) for each strip width was tested at the extremes: low

and high frequency, and small and large strip separation. There-

fore, for each pair there are eight convergence plots, so they are

omitted to save space. Generally, absolute convergence cannot be

shown due to numericaf instabilities and the excessive CPU time

required. However, the convergent values can be estimated due to

the semioscillatory behavior of the convergence curves, as dem-

onstrated in [2]. We estimate the convergent values and place

error brackets of +0.5 percent on the propagation constant and

+ 1.5 percent on the characteristic impedance. The least number

of modes required for all curves on all eight convergence plots to

fall within the error brackets is used to calculate all data for the

design chart. The numbers of modes used are &fz = 9 for Fig. 4

and lfz = 8 for Figs. 5 and 6.
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The most restrictive convergence plot is usually the one for the

propagation constant of the narrowest strip spacing at the lowest

frequency. This is due to the field having least space in terms of

wavelength to adjust to the structure. However, when the odd

mode is weakly bound at high frequencies, a small change in the

propagation constant changes the decay rate away from the strips

dramatically. This greatly affects the power contained in the

mode and hence the characteristic impedance. In this case the

odd-mode impedance at high frequencies sets the number of

modes required. Generally, there exists a relation between the

number of modes and the (2/cl = (z/63 dielectric step. Larger

steps require more modes since the field has a more complicated

structure in which to conform.

Numerical instabilities occur in the determinant calculation for

large matrices. A single-precision (64-bit word) Gaussian elimina-

tion routine with partiaf pivoting was found to be insufficient for

some calculations. A double-precision (128-bit word) version was

tried with surprisingly no improvement in stability. It was found

that a single-precision Gaussian elimination routine with full

pivoting dramatically improves the numerical stability. The full

pivoting routine was found to slow the overall computation by a

factor of approximately 2 over the partiaf pivoting routine.

IV. CONCLUSIONS

A mode-matching method is applied to the analysis of cou-

pled-line Microslab waveguide. The method is appropriate for

analysis only and generally requires a long-word-length computer

due to the large matrices encountered. Numerical stability can be

improved by using full pivoting for the Gaussian elimination

routine. Design is facilitated by repeated analysis to generate

design charts. Design charts are provided for GaAs/alurnina

Microslab implementations.
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Tests of Microstrip Dispersion Formulas

H. A. ATWATER, SENIOR MEMBER, IEEE

.&tract —A set of published foromlas for the frequency dependence of

the microstrip effective relative dielectric constant 6,,(j) is tested relative

to an assemblage of rneasnred data values for this quantity chosen from the

fiteratnre. The r.m.s. deviation of the predicteaf from the measured values

Manuscript received August 10, 1987; revised September 12, 1987.

The author is with the Naval Postgraduate School, Monterey, CA 93943.

IEEE Log Number 8718360.

ranged from 2.3 percent to 4.1 percent of the seven formulas for c,,(~)

tested. A formula due to Kkschning and Jansen [1OJ showed the lowest

average deviation from measured values, although the differences between

the predictions of their formula and others tested are of the order of the

error fimits of the comparison process. It is concluded that tbe results

indicate the suitability of relatively simple analytical expressions for the

computation for microstrip dispersion.

I. lNTRODUCHON

The widespread use of microstrip transmission line for micro-

wave circuit construction has created a need for accurate and

practicaf computational algorithms for the values of microstrip

line parameters. For this purpose, the microstrip line is modeled

as an equivalent TEM system at the operating frequency. For this

quasi-TEM model, a characteristic impedance ZO and an effec-

tive relative dielectric constant: Cr, = (C\Vp)2 are defined, where

UP/c is the velocity of the waves on microstrip line normalized to

the free-space velocity of light. Because the wave fields exist in

two dielectric media, namely the substrate dielectric matetiaf and

the ambient air, hybrid modes propagate on microstnp line, and

the wave velocity is frequency-dependent. A knowledge of the

dispersive relative dielectric constant c,, (f) is required for mi-

crostrip circuit design.

‘ &though computer-aided design (CAD) programs are avail-

able with capability for generating mi crostnp line parameters, an

extensive development has been made of closed-form expressions

which allow rapid computation of the parameters without the

necessity of setting up of a CAD file [1]–[3]. Veghte and Balanis

have recently shown that the use of closed-form expressions for

c,, (f) Witin a computer program for the study of transient

pulses on microstrip facilitated the calculation and saved com-

puter time [4]. They reviewed the oligin of several closed-form

expressions appearing in the literature [5]–[9] and compared their

respective predicted values for (,, (f) over a wide frequency

range. The expressions tested were shown to be in relatively close

agreement to their predictions of dispersive behavior, but no

comparison was made of ihese results with experimentally ob-

served v&es of c,,(f). In literature presentations of closed-form

expressions for c., (f) [5]–[9], their predictions have’ typically

been shown in comparison with a limited selection of experimen-

tal data points over a small range of substrate dielectric constants

and microstrip line dimensions. It is the purpose of the present

work to compare predicted values of c,,(f) from severaf closed-

form expressions with experimentally measured data chosen from

a wide range of sources.

11. CLOSED-FORM EXPRESSIONS

The microstrip dispersion expressions tested are shown below

in (1) to (6). The algebraic forms of these expressions as shown in

(1) to (6) have been modified from the form of their original

presentation to bring them into a similar formrdism for compari-

son here. In these expressions, c,=(0) is the zero-frequency, or

quasi-static value of c,,, c, is the substrate relative dielectric

constant, h is substrate hei~t, w is the microstrip line width, Z.

its characteristic impedance, fio = 4 ~/107 henrys/meter, f is

frequency, and c the velocity of I@ t.
1) W. J. Getsinger [5]:

1 + K1 fn;

cre(f ) = ‘.,(0) ‘—1+ Gf;
(1)
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