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in this case, an optimum value of the parameter a can be
determined self-consistently via the following iterative scheme:

(i)  Assign an initial value to « in an arbitrary way.

(i) Solve the matrix equation to obtain k2 as an eigenvalue
(note that B is given as an input datum).

Calculate a according to (6).

Tterate the above procedures (ii) and (iii) until the solu-
tion converges within required accuracy.

(iif)
(iv)

Although this method includes only one decay parameter, it
does not require the calculation ~f the eigenvector.

III. NUMERICAL EXAMPLE

To demonstrate the power of the present algorithms, we con-
sider a round optical fiber since its exact solution is readily
available. Making use of symmetry nature, we divide only one
quarter of the cross section into quadratic finite and infinite
elements, as illustrated in Fig. 3. As a finite element scheme, we
use the scalar formulation [2], [3].

Table I exhibits an example of the analyzed results, where the
index difference A =1 percent, ny =1.46, and Ba==6 (a: core
radius), and the initial set of the parametersis a, /8=a, /8= 0.1.
Note that Sa =6 corresponds to a case very near cutoff. It is
readily found from the table that sufficiently accurate solutions
are obtainable only with one time of iteration. On the other hand,
the solution for the simple truncation, in which the boundaries
X=Xx,, y=, are assumed to be perfect conducting walls and
no infinite elements are added to them, is far less accurate than
that for the present algorithms.

Fig. 4 displays an example of the field distributions in the cross
section. In this figure the region |X|> 7, |Y|> 7 corresponds to
that divided into infinite elements. It is seen from the figure that
the interface between finite-element and infinite-element regions
is smooth in spite of only one time of iteration.

IV. CONCLUSIONS

A self-consistent finite-element approach for the eigenmode
analysis of unbounded waveguides has been proposed using
decay-type infinite elements. Two algorithms have been described
for the determination of the unknown decay parameters. Through
the application to the eigenmode analysis of an optical fiber, the
power of this approach has been successfully demonstrated.
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Analysis of Coupled Microslab™ Lines

BRIAN YOUNG anp TATSUO ITOH, FELLOW, IEEE

Abstract —Symmetrically coupled Microslab lines are analyzed with a
mode-matching method to build design charts for the propagation constant
and characteristic impedance. Results are provided for GaAs/alumina
Microslab implementations.

I. INTRODUCTION

Microslab is a novel low-loss quasi-planar waveguide intended
for use at millimeter-wave frequencies [1]. The single-line imple-
mentation has been studied and the results appear in [2], where a
design procedure is presented which minimizes conductor loss,
and design charts are given for implementation on GaAs sub-
strates. This paper extends that work by analyzing the symmetri-
cal coupled-line Microslab configuration. Design charts are pro-
vided for GaAs/alumina implementations to complement the
results in [2]. The design charts to complete the GaAs implemen-
tation for insulating layer dielectric constants of 8.2 and 11.5 are
not included due to the lack of space.

II. ANALYSIS

The analysis method used to build the design charts is the
mode-matching method. The particular procedure is based on the
one used in [2]. The method is outlined below to provide the
additional details necessary for the coupled-line implementation.

The symmetrically coupled Microslab is shown in Fig, 1. The
metallizations are perfectly conducting with zero thickness, and
the dielectrics are lossless. A cover plate is added to the structure
to discretize the eigenvalue spectrum [3]. Since the strips have
equal widths, the structure can be divided along the plane of
symmetry with a magnetic (electric) wall to eliminate the odd
(even) modes. The divided structure is further subdivided into
four regions as shown in Fig. 2 for modal expansion. Extra
dielectrics are added to the left and right of the strip in regions 1
and 4 to facilitate checking the program.
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Fig. 1. Symmetric coupled-line Microslab.
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Fig. 2. Subdivision of Microslab into four regions for mode-matching

analysis.

Each region is a section of layered parallel-plate waveguide.
The fields in each are expanded in the parallel-plate waveguide
modes, as discussed in [2]. For computer implementation, the
modal expansions are truncated at M, terms in the ith region.
Equal numbers of TM" and TE” modes are retained so that the
total number of modes in the ith region is 2M,. The field
expansions are then matched at the x=S/2 and x=W 4+ §/2
interfaces. The resulting homogeneous matrix equation yields the
propagation constants when the determinant vanishes.

The number of modes retained in the expansions is constrained
by the matrix equation and the edge condition. A square matrix
requires that 2M, +2M; = M, + M,. The edge condition re-
quires that M, /M,=M,/M,=c/d [4], which matches the
spectral components along the interfaces. The accuracy of the
solution is set by choosing the number of modes in one region.

After the homogeneous matrix equation is solved, the expan-
sion coefficients in regions 1 and 4 are found by choosing one
coefficient arbitrarily and then solving the resulting least squares
problem using the QR factorization. The coefficients in regions 2
and 3 can then be easily computed.

As in [2], the problem is formulated entirely in real functions
and only real solutions are searched for and computed. This
limits the search to nonleaky solutions (of primary interest), but
it greatly reduces the computation time.

The program was verified by computing the dispersion curve
for a layered coupled-line microstrip. The results are shown in
Fig. 3. The mode-matching results are compared with the results
from a spectral-domain program. The spectral-domain results are
for an open structure, while the mode-matching analysis includes
the cover plate. The cover plate pushes 8/8, higher by increasing
the ratio of dielectric to air, with greater effect at lower frequen-
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Fig. 3. Dispersion comparison for a layered microstrip. The spectral-domain
results are for an open structure.
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(b) Characteristic impedance.

cies, where the plate is electrically closer to the strips. Despite
this, the agreement between the two results is excellent.

The power—voltage definition is used for the characteristic
impedance for the reason given in [2]: poor behavior of the strip
currents at high frequencies. Since a leaky mode has infinite
power content, the characteristic impedance of a leaky mode is
zero. This fact manifests itself as dips in the characteristic imped-
ance design charts as modes become weakly bound.

III. DESIGN CHARTS

The structure for which design charts are provided is the
coupled-line version of the ¢, = ¢; = 9.7, ¢, =12.9 single-line case
from Fig. 11 in [2]. The coupled-line design charts corresponding
to the €; = €; = 8.2, 11.5 single-line cases from Figs. 10 and 12 in
[2] are not included due to the lack of space.

The coupled-line design charts with €; = ¢; = 9.7, €, =12.9 for
three different strip widths are given in Figs. 4-6. The dimen-
sions are shown in the inset of the dispersion curves. The cover
plate was set at the same height for which the single-line design
chart in [2] was constructed to maintain consistency in the
results. The coupled-line charts plot only the lowest order even
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Fig. 6. Design charts for ¢ =¢; =97, €, =129, W=1.8 mm, (a) Disper-
sion. (b) Characteristic impedance.

and odd modes in their nonleaky regions. Modes below the
dashed curves in the propagation constant charts are leaky and
hence unsolvable by the techniques used here. Fach design chart
data point calculation for both the propagation constant and the
characteristic impedance required on the order of 20-30 seconds
on a Cray X-MP computer. Experimental verification of the
charts is still required.

The convergence of the design chart pair (dispersion and
impedance) for each strip width was tested at the extremes: low
and high frequency, and small and large strip separation. There-
fore, for each pair there are eight convergence plots, so they are
omitted to save space. Generally, absolute convergence cannot be
shown due to numerical instabilities and the excessive CPU time
required. However, the convergent values can be estimated due to
the semioscillatory behavior of the convergence curves, as dem-
onstrated in [2]. We estimate the convergent values and place
error brackets of 0.5 percent on the propagation constant and
+1.5 percent on the characteristic impedance. The least number
of modes required for all curves on all eight convergence plots to
fall within the error brackets is used to calculate all data for the
design chart. The numbers of modes used are M, =9 for Fig. 4
and M, =8 for Figs. 5 and 6.
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The most restrictive convergence plot is usually the one for the
propagation constant of the narrowest strip spacing at the lowest
frequency. This is due to the field having least space in terms of
wavelength to adjust to the structure. However, when the odd
mode is weakly bound at high frequencies, a small change in the
propagation constant changes the decay rate away from the strips
dramatically. This greatly affects the power contained in the
mode and hence the characteristic impedance. In this case the
odd-mode impedance at high frequencies sets the number of
modes required. Generally, there exists a relation between the
number of modes and the €, /¢ = ¢, /¢, dielectric step. Larger
steps require more modes since the field has a more complicated
structure in which to conform.

Numerical instabilities occur in the determinant calculation for
large matrices. A single-precision (64-bit word) Gaussian elimina-
tion routine with partial pivoting was found to be insufficient for
some calculations. A double-precision (128-bit word) version was
tried with surprisingly no improvement in stability. It was found
that a single-precision Gaussian elimination routine with full
pivoting dramatically improves the numerical stability. The full
pivoting routine was found to slow the overall computation by a
factor of approximately 2 over the partial pivoting routine.

IV. CoNCLUSIONS

A mode-matching method is applied to the analysis of cou-
pled-line Microslab waveguide. The method is appropriate for
analysis only and generally requires a long-word-length computer
due to the large matrices encountered. Numerical stability can be
improved by using full pivoting for the Gaussian elimination
routine. Design is facilitated by repeated analysis to generate
design charts. Design charts are provided for GaAs/alumina
Microslab implementations.
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Tests of Microstrip Dispersion Formulas

H. A. ATWATER, SENIOR MEMBER, 1EEE

Abstract — A set of published formulas for the frequency dependence of
the microstrip effective relative dielectric constant ¢, (f) is tested relative
to an assemblage of measured data values for this quantity chosen from the
literature. The r.m.s. deviation of the predicted froin the measured values
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ranged from 2.3 percent to 4.1 percent of the seven formulas for ¢ (/)
tested. A formula due to Kirschning and Jansen [10] showed the lowest
average deviation from measured values, although the differences between
the predictions of their formula and others tested are of the order of the
error limits of the comparison process. It is concluded that the results
indicate the suitability of relatively simple analytical expressons for the
computation for microstrip dispersion.

I. INTRODUCTION

The widespread use of microstrip transmission line for micro-
wave circuit construction has created a need for accurate and
practical computational algorithms for the values of microstrip
line parameters. For this purpose, the microstrip line is modeled
as an equivalent TEM system at the operating frequency. For this
quasi-TEM model, a characteristic impedance Z;, and an effec-
tive relative dielectric constant: ¢, = (c/v,)” are defined, where
v, /¢ is the velocity of the waves on microstrip line normalized to
the free-space velocity of light. Because the wave fields exist in
two dielectric media, namely the substrate dielectric material and
the ambient air, hybrid modes propagate on microstrip line, and
the wave velocity is frequency-dependent. A knowledge of the
dispersive relative dielectric constant e,,(f) is required for mi-
crostrip circuit design.

" Although computer-aided design (CAD) programs are avail-
able with capability for generating microstrip line parameters, an
extensive development has been made of closed-form expressions
which allow rapid computation of the parameters without the
necessity of setting up of a CAD file [1]-[3]. Veghte and Balanis
have recently shown that the use of closed-form expressions for
€,.(f) within a computer program for the study of transient
pulses on microstrip facilitated the calculation and saved com-
puter time [4]. They reviewed the origin of several closed-form
expressions appearing in the literature {5}-[9] and compared their
respective predicted values for ¢,.(f) over a wide frequency
range. The expressions tested were shown to be in relatively close
agreement to their predictions of dispersive behavior, but no
comparison was made of these results with experimentally ob-
served values of ¢,,(f). In literature presentations of closed-form
expressions for ¢,,(f) [5]-[9], their predictions have typically
been shown in comparison with a limited selection of experimen-
tal data points over a small range of substrate dielectric constants
and microstrip line dimensions. It is the purpose of the present
work to compare predicted values of ¢,,(f) from several closed-
form expressions with experimentally measured data chosen from
a wide range of sources.

11. CLOSED-FORM EXPRESSIONS

The microstrip dispersion expressions tested are shown below
in (1) to (6). The algebraic forms of these expressions as shown in
(1) to (€) have been modified from the form of their original
presentation to bring them into a similar formalism for compari-
son here. In these expressions, ¢, (0) is the zero-frequency, or
quasi-static value of ¢,,,¢, is the substrate relative dielectric
constant,  is substrate height, w is the microstrip line width, Z,
its characteristic impedance, fi,=47/10" henrys/meter, f is
frequency, and ¢ the velocity of light.

1) W. J. Getsinger [S]:

1+ Klfnzl

Ere(f) = 6,8(0)"“l+ G2 (1)
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